Exercise 35

If the minute hand of a clock has length r (in centimeters), find the rate at which it sweeps out area as a function of r.

Solution

Start with the formula for the area of a circular sector.

$$
A=\frac{1}{2} r^{2} \theta
$$

Take the derivative of both sides with respect to t by using the chain and product rules.

$$
\begin{aligned}
\frac{d}{d t}(A) & =\frac{d}{d t}\left(\frac{1}{2} r^{2} \theta\right) \\
\frac{d A}{d t} & =\frac{1}{2}\left\{\left[\frac{d}{d t}\left(r^{2}\right)\right] \theta+r^{2}\left[\frac{d}{d t}(\theta)\right]\right\} \\
& =\frac{1}{2}\left[\left(2 r \cdot \frac{d r}{d t}\right) \theta+r^{2}\left(\frac{d \theta}{d t}\right)\right] \\
& =r \frac{d r}{d t} \theta+\frac{1}{2} r^{2} \frac{d \theta}{d t}
\end{aligned}
$$

The minute hand doesn't change in length, so $d r / d t=0$. Also, the minute hand moves through 2π radians every hour, so $d \theta / d t=2 \pi / 60 \mathrm{rad} / \mathrm{min}$. Therefore,

$$
\frac{d A}{d t}=r(0) \theta+\frac{1}{2} r^{2}\left(\frac{2 \pi}{60}\right)=\frac{\pi r^{2}}{60} \frac{\mathrm{~cm}^{2}}{\min } .
$$

